Skalarprodukt
Aufgabe

Berechnen Sie den Winkel zwischen den Vektoren \( \overrightarrow{a} = \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \) und \( \overrightarrow{b} = \left(\begin{array}{c} 3 \\ 0 \\ -4 \end{array}\right) \).

Lösung

\( \cos \varphi = \dfrac{\overrightarrow{a} \cdot \overrightarrow{b}}{\left| \overrightarrow{a} \right| \cdot \left| \overrightarrow{b} \right|} \)

\( \cos \varphi = \dfrac{\left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \cdot \left(\begin{array}{c} 3 \\ 0 \\ -4 \end{array}\right)}{\sqrt{2^2 + 1^2 + 2^2} \cdot \sqrt{3^2 + 0^2 + (-4)^2}} \)

\( \cos \varphi = \dfrac{2 \cdot 3 + 1 \cdot 0 + 2 \cdot (-4)}{\sqrt{9} \cdot \sqrt{25}} \)

\( \cos \varphi = \dfrac{-2}{3 \cdot 5} \)

\( \cos \varphi = -\dfrac{2}{15} \)

\( \varphi = \arccos \left(-\dfrac{2}{15}\right) \)

\( \varphi \approx 97,66° \)

Zuletzt geändert: Donnerstag, 28. Oktober 2021, 11:21